
3GPP TSG-SA WG3 Meeting #91bis
S3-181968
La Jolla (US), 21-25 May 2018

 revision of S3-181495
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	0162
	rev
	2
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	X
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Corrections on SUCI protection schemes

	
	

	Source to WG:
	NTT DOCOMO, Ericsson, Huawei, Nokia, Hisilicon, Apple

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-SEC
	
	Date:
	2018-04-09

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	The specification currently defines three protection schemes for generation of SUCI. However, the identifiers for these schemes are currently undefined.
In SECG SEC1, the ICB for AES-CTR-mode is set to 0x0000000000000000. While many attacks which exploit a fixed IV in AES-CTR mode are not relevant to ECIES due to its changing key, there may be attacks which allow an adversary that knows part of the plaintext to recover the full plaintext (for example when NAI is encrypted). Currently a practical attack is not foreseen, but randomising the IV would mitigate against unforeseen consequences from the fixed value. This should be mitigated before ECIES is deployed.
SECG SEC1 specifies that the block cipher mode of operation CTR mode will be implemented as specified in NIST Special Publication 800-38A. It is not specified in 800-38A how successive counter blocks are generated from the initial counter block (ICB).

	
	

	Summary of change:
	It is proposed to use 8 bits for representing a protection scheme identifier.
Recall that the NAS/RRC algorithms are represented using 4 bits. Using 4 bits would allow only 16 differnet protection schemes, which seems low taken into account that these protection schemes use asymmetric cryto. And using 16 bits seems unnecessary because it is more than unlikely that 65,536 different protection schemes would be used. It is also preferable that the size of SUCI over-the-air is not increased unnecessarily. Hence it is proposed to have a strategic balance at 8 bits long protection identifiers, that would allow 256 different protection schemes.
It is further proposed to start the numbering with ZERO, similar to NAS/RRC algorithms.
It is further proposed that following identifiers are used for currently standardized schemes:

· “null-scheme” : 0x00
· “profile <A>” : 0x01
· “profile ” : 0x02
It is further proposed that values 0x03 - 0xC7 are reserved for future standardized schemes, that would allow total of 200 standardized schemes.

It is further proposed that values 0xC8 - 0xFF are reserved for propietary schemes, that would allow total of 56 propieraty schemes.

There are further editorial changes.

It is a method generating an ICB used in AES-CTR-mode, In this way, the probability of (enckey, ICB)-collisions is decreased significantly.
It is further proposed how successive counter blocks are generated from the ICB in CTR mode.
The Profile <A> and Profile have been updated with correct lengths. For clarity, it is “octets” and “bits” are explicitly stated.

	
	

	Consequences if not approved:
	Incomplete specification.

	
	

	Clauses affected:
	Annex C.1, C.2, C.3.2, C3.3, C3.4.0, C.3.4.1, C.3.4.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** START OF CHANGES ****
Annex C (normative):
Protection schemes for concealing the subscription permanent identifier

C.1
Introduction

The present Annex specifies the protection schemes for concealing the subscription permanent identifier. Each protection scheme is identified using a 4-bit identifier. The defined values are:
null-scheme "0x0";

Profile <A> "0x1"; and
Profile "0x2".
The values 0x3 - 0xB are reserved for future standardized protection schemes. The values 0xC - 0xF are reserved for propietary protection schemes.
Care should be taken when using unique schemes for small groups of users, as this may impact the effectiveness of the privacy scheme for these users.
Each protection scheme has scheme-output with following sizes:

null-scheme size of input, i.e., size of MSIN or username;

Profile <A> total of 256-bit public key, 64-bit MAC, and size of input; and

Profile total of 264-bit public key, 64-bit MAC, and size of input.
Editor's Note: The output values for the propietary protection schemes needs to be specified.
**** NEXT CHANGE ****
C.2
Null-scheme
The null-scheme shall be implemented such that it returns the same output as the input, which applies to both encryption and decryption.

When using the null-scheme, the SUCI does not conceal the SUPI and therefore the newly generated SUCIs do not need to be fresh.

NOTE 1:
The reason for mentioning the non-freshness is that, normally, in order to attain unlinkability (i.e., to make it infeasible for over-the-air attacker to link SUCIs together), it is necessary for newly generated SUCIs to be fresh. But, in case of the null-scheme, the SUCI does not conceal the SUPI. So unlinkability is irrelevant.

NOTE 2:
The null-scheme provides no privacy protection.

Editor's Note: It is FFS to contact other WGs (like CT1) or wait for their progress before finalizing the identifier, and size of the null-scheme. The maximum size should cover both the IMSI and NAI formats.
**** NEXT CHANGE ****
+++++++++++++++++ NEXT CHANGE ++++++++++++++++

C.3.2
Processing on UE side

The ECIES scheme shall be implemented such that for computing a fresh SUCI, the UE shall use the provisioned public key of the home network and freshly generated ECC (elliptic curve cryptography) ephemeral public/private key pair according to the ECIES parameters provisioned by home network. The processing on UE side shall be done according to the encryption operation defined in [29]. with the following changes to Section 3.8 and step 5 and 6 of Section 5.1.3.
· generate keying data K of length enckeylen + icblen + mackeylen
· Parse the leftmost enckeylen octets of K as an encryption key EK, the middle icblen octets of K as an ICB, and
the rightmost mackeylen octets of K as a MAC key MK.

The final output shall be the concatenation of the ECC ephemeral public key, the ciphertext value, the MAC tag value, and any other parameters, if applicable.

OTE:
The reason for mentioning "any other parameter, if applicable" in the final output is to allow cases, e.g. to enable the sender to send additional sign indication when point compression is used.

Editor's Note: The format and encoding of the final output needs to be finalized by CT WG1.

The Figure C.3.2-1 illustrates the UE's steps.

[image: image1.emf]Eph. private key1> Eph. key pairgeneration2> KeyagreementEph. shared key3> Keyderivation4> SymmetricencryptionEph. public keyPublic key of HNPlaintext blockCipher-text valueEph. enc. key, ICBFinal output = Eph. public key || Ciphertext || MAC tag [|| any other parameter]Eph. mac keyMAC-tag value5> MAC function

Figure C.3.2-1: Encryption based on ECIES at UE
C.3.3
Processing on home network side

The ECIES scheme shall be implemented such that for deconcealing a SUCI, the home network shall use the received ECC ephemeral public key of the UE and the private key of the home network. The processing on home network side shall be done according to the decryption operation defined in [29] with the following changes to Section 3.8 and step 6 and 7 of Section 5.1.4.
· generate keying data K of length enckeylen + icblen + mackeylen
· Parse the leftmost enckeylen octets of K as an encryption key EK, the middle icblen octets of K as an ICB, and
the rightmost mackeylen octets of K as a MAC key MK.
NOTE:
Unlike the UE, the home network does not need to perform a fresh ephemeral key pair generation for each decryption. How often the home network generates new public/private key pair and how the public key is provisioned to the UE are out of the scope of this clause.

The Figure C.3.3-1 illustrates the home network's steps.

[image: image3.emf]1> KeyagreementEph. shared key2> KeyderivationEph. public key of UEPrivate key of HN3> SymmetricdecryptionPlaintext blockCipher-text valueEph. dec. key, ICBEph. mac keyMAC-tag value4> MAC function (verif.)

Figure C.3.3-1: Decryption based on ECIES at home network

**** NEXT CHANGE ****
C.3.4.0
General

Unless otherwise stated, the ECIES profiles follow the terminology and processing specified in SECG version 2 [29] and [30]. The profiles shall use "named curves" over prime fields.
For generating successive counter blocks from the initial counter block (ICB) in CTR mode, the profiles shall use the standard incrementing function in section B.1 of NIST Special Publication 800-38A [16] with m = 32 bits. The ICB corresponds to T1 in section 6.5 of [16].
Profile A shall use its own standardized processing for key generation (section 6 of RFC 7748 [46]) and shared secret calculation (section 5 of RFC 7748 [46]). The Diffie-Hellman primitive X25519 (section 5 of RFC 7748 [46]) takes two random octet strings as input, decodes them as scalar and coordinate, performs multiplication, and encodes the result as an octet string. The shared secret output octet string from X25519 shall be used as the input Z in the ECIES KDF (section 3.6.1 of [29]).

Profile B shall use point compression to save overhead and shall use the Elliptic Curve Cofactor Diffie-Hellman Primitive (section 3.3.2 of [29]) to enable future addition of profiles with cofactor h ≠ 1. For curves with cofactor h = 1 the two primitives (section 3.3.1 and 3.3.2 of [29]) are equal.

The profiles shall not use backwards compatibility mode (therefore are not compatible with version 1 of SECG).

C.3.4.1
Profile A
The ME and SIDF shall implement this profile. The ECIES parameters for this profile shall be the following:

-
EC domain parameters

: Curve25519 [46]

-
EC Diffie-Hellman primitive

: X25519 [46]

-
point compression

: N/A

-
KDF

: ANSI-X9.63-KDF [29]
-
Hash

: SHA-256
-
SharedInfo1

: [image: image6.png](the ephemeral public key octet string – see [29] section 5.1.3)
-
MAC

: HMAC–SHA-256

-
mackeylen

: 32 octets (256 bits)
-
maclen

: 8 octets (64 bits)
-
SharedInfo2

: the empty string
-
ENC

: AES–128 in CTR mode

-
enckeylen

: 16 octets (128 bits)
-
icblen

: 16 octets (128 bits)
-
backwards compatibility mode

: false

Editor's Note: It is FFS to contact other WGs (like CT1) or wait for their progress before finalizing the identifier, and size of the null-scheme. The maximum size should cover both the IMSI and NAI formats.

**** NEXT CHANGE ****
C.3.4.2
Profile B
The ME and SIDF shall implement this profile. The ECIES parameters for this profile shall be the following:

-
EC domain parameters

: secp256r1 [30]

-
EC Diffie-Hellman primitive

: Elliptic Curve Cofactor Diffie-Hellman Primitive [29]

-
point compression

: true

-
KDF

: ANSI-X9.63-KDF [29]

-
Hash

: SHA-256

-
SharedInfo1

: [image: image8.png] (the ephemeral public key octet string – see [29] section 5.1.3)

-
MAC

: HMAC–SHA-256

-
mackeylen

: 32 octets (256 bits)
-
maclen

: 8 octets (64 bits)
-
SharedInfo2

: the empty string

-
ENC

: AES–128 in CTR mode

-
enckeylen

: 16 octets (128 bits)
-
icblen

: 16 octets (128 bits)
-
backwards compatibility mode

: false

**** END OF CHANGES **
Eph. private key
1> Eph. key pair
generation
2> Key
agreement
Eph. shared key
3> Key
derivation
4> Symmetric
encryption
Eph. public key
Public key of HN
Plaintext block
Cipher-text value
Eph. enc. key, ICB
Final output = Eph. public key || Ciphertext || MAC tag [|| any other parameter]
Eph. mac key
MAC-tag value
5> MAC function

1> Key
agreement
Eph. shared key
2> Key
derivation
Eph. public key of UE
Private key of HN
3> Symmetric
decryption
Plaintext block
Cipher-text value
Eph. dec. key, ICB
Eph. mac key
MAC-tag value
4> MAC function (verif.)

1> Key
agreement
Eph. shared key
2> Key
derivation
Eph. public key of UE
Private key of HN
Eph. master shared key
6> Symmetric
encryption
Plain-text block
Cipher-text value
Eph. dec. key
3> MSBs
4> LSBs
Eph. mac key
MAC-tag value
5> MAC function (verif.)

